CLVTools is a toolbox for various probabilistic customer attrition models for non-contractual settings. It provides a framework, which is capable of unifying different probabilistic customer attrition models. This package provides tools to estimate the number of future transactions of individual customers as well as the probability of customers being alive in future periods. Further, the average spending by customers can be estimated. Multiplying the future transactions conditional on being alive and the predicted individual spending per transaction results in an individual CLV value.

The implemented models require transactional data from non-contractual businesses (i.e. customers' purchase history).

See also

Development for CLVTools can be followed via the GitHub repository at https://github.com/bachmannpatrick/CLVTools.

Author

Maintainer: Patrick Bachmann pbachma@ethz.ch

Authors:

Examples


# \donttest{

data("cdnow")

# Create a CLV data object, split data in estimation and holdout sample
clv.data.cdnow <- clvdata(data.transactions = cdnow, date.format = "ymd",
                          time.unit = "week", estimation.split = 39, name.id = "Id")

# summary of data
summary(clv.data.cdnow)
#> CLV Transaction Data 
#>                                 
#> Time unit         Weeks         
#> Estimation length 39.0000 Weeks 
#> Holdout length    38.71429 Weeks
#> 
#> Transaction Data Summary 
#>                                    Estimation      Holdout         Total     
#> Number of customers                -               -               2357      
#> First Transaction in period        1997-01-01      1997-10-02      1997-01-01
#> Last Transaction in period         1997-10-01      1998-06-30      1998-06-30
#> Total # Transactions               4819            1877            6696      
#> Mean # Transactions per cust       2.045           2.752           2.841     
#> (SD)                               2.195           3.026           3.772     
#> Mean Spending per Transaction      35.962          37.715          36.453    
#> (SD)                               43.538          33.725          41.030    
#> Total Spending                     173300.400      70791.540       244091.940
#> Total # zero repeaters             1411            -               -         
#> Percentage of zero repeaters       59.864          -               -         
#> Mean Interpurchase time            9.282           8.227           16.017    
#> (SD)                               7.772           6.256           14.533    
#> 

# Fit a PNBD model without covariates on the first 39 periods
pnbd.cdnow <- pnbd(clv.data.cdnow,
                   start.params.model = c(r=0.5, alpha=8, s=0.5, beta=10))
#> Starting estimation...
#> Estimation finished!
# inspect fit
summary(pnbd.cdnow)
#> Pareto/NBD Standard  Model 
#> 
#> Call:
#> pnbd(clv.data = clv.data.cdnow, start.params.model = c(r = 0.5, 
#>     alpha = 8, s = 0.5, beta = 10))
#> 
#> Fitting period:                               
#> Estimation start  1997-01-01   
#> Estimation end    1997-10-01   
#> Estimation length 39.0000 Weeks
#> 
#> Coefficients:
#>       Estimate Std. Error  z-val Pr(>|z|)    
#> r      0.55104    0.04733 11.643  < 2e-16 ***
#> alpha 10.55523    0.83991 12.567  < 2e-16 ***
#> s      0.62519    0.19889  3.143  0.00167 ** 
#> beta  12.25194    6.63250  1.847  0.06471 .  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Optimization info:                 
#> LL     -9615.2415
#> AIC    19238.4830
#> BIC    19261.5436
#> KKT 1  TRUE      
#> KKT 2  TRUE      
#> fevals 19.0000   
#> Method L-BFGS-B  
#> 
#> Used Options:                 
#> Correlation FALSE

# Predict 10 periods (weeks) ahead from estimation end
#   and compare to actuals in this period
pred.out <- predict(pnbd.cdnow, prediction.end = 10)
#> Predicting from 1997-10-02 until (incl.) 1997-12-10 (10 Weeks).
#> Estimating gg model to predict spending...
#> Starting estimation...
#> Estimation finished!

# Plot the fitted model to the actual repeat transactions
plot(pnbd.cdnow)
#> Plotting from 1997-01-01 until 1998-07-05.


# }