NEWS.md
newcustomer() prediction: Include the initial transaction in the predicted number of ordersclvdata(data.end): Add parameter data.end to specify a data end beyond the last actual transactionsummary(): Always set zval and pval to NA for the main model parametershessian(): Add method to calculate hessian matrix for already fitted modelsarma::is_finite() -> std::isfinite()
predicted.CLV -> predicted.period.CLV
predict(): Rename {predicted, actual}.total.spending -> {predicted, actual}.period.spending
newcustomer.spending(): Predict average spending per transaction for customers without order historyclv.data
gg with remove.first.transaction = TRUE
latentAttrition() and spending()
predicted.total.spending to predictionsdata.table::IDate as data inputs to clvdata
summary.clv.data:Much faster by improving the calculation of the mean inter-purchase timelatentAttrition() and spending())plot.clv.data(which='timings'))plot(other.models=list(), label=c()))